Sunday, May 22, 2011

Asbestos


Asbestos ( /æzˈbɛstəs/, /æs-/; from Greek ἄσβεστος, "unquenchable" or "inextinguishable") is a set of six naturally occurring silicate minerals exploited commercially for their desirable physical properties.[2] They all have in common their asbestiform habit, long, (1:20) thin fibrous crystals. The inhalation of asbestos fibers can cause serious illnesses, including malignant lung cancer, mesothelioma (a formerly rare cancer strongly associated with exposure to amphibole asbestos), and asbestosis (a type of pneumoconiosis). Long exposure to high concentrations of asbestos fibers is more likely to cause health problems, as asbestos exists in the ambient air at low levels, which itself does not cause health problems. The European Union has banned all

use of asbestos and extraction, manufacture and processing of asbestos products.
Asbestos became increasingly popular among manufacturers and builders in the late 19th century because of its sound absorption, average tensile strength, and its resistance to heat, electrical and chemical damage. When asbestos is used for its resistance to fire or heat, the fibers are often mixed with cement or woven into fabric or mats. Asbestos was used in some products for its heat resistance, and in the past was used on electric oven and hotplate wiring for its electrical insulation at elevated temperature, and in buildings for its flame-retardant and insulating properties, tensile strength, flexibility, and resistance to chemicals.


Types and associated fibers

Six minerals are defined by the United States Environmental Protection Agency as "asbestos" including those belonging to the serpentine class chrysotile and those belonging to the amphibole class amosite, crocidolite, tremolite, anthophyllite and actinolite. There is an important distinction to be made between serpentine and amphibole asbestos due to differences in their chemical composition and their degree of potency as a health hazard when inhaled. However asbestos and all commercial forms of asbestos (including chrysotile asbestos)
are known to be human carcinogens based on sufficient evidence of carcinogenicity in humans.[6][7]

Serpentine

White

Chrysotile, CAS No. 12001-29-5, is obtained from serpentinite rocks which are common throughout the world. Its idealized chemical formula is Mg3(Si2O5)(OH)4. Chrysotile fibers are curly as opposed to fibers from amosite, crocidolite, tremolite, actinolite, and anthophyllite which are needlelike.[8] Chrysotile, along with other types of asbestos, has been banned in dozens of countries and is only allowed in the United States and Europe in very limited circumstances. Chrysotile has been used more than any other type and accounts for about 95% of the asbestos found in buildings in America.[9] Applications where chrysotile might be used include the use of joint compound. It is more flexible than amphibole types of asbestos; it can be spun and woven into fabric. The most common use is within corrugated asbestos cement roof sheets typically used for outbuildings, warehouses and garages. It is also found as flat sheets used for ceilings and sometimes for walls and floors. Numerous other items have been made containing chrysotile including brake linings, cloth behind fuses (for fire protection), pipe insulation, floor tiles, and rope seals for boilers.[citation needed]

Amphibole

Brown

Amosite, CAS No. 12172-73-5, is a trade name for the amphiboles belonging to the cummingtonite-grunerite solid solution series, commonly from Africa, named as an acronym from Asbestos Mines of South Africa. One formula given for amosite is Fe7Si8O22(OH)2. It is found most frequently as a fire retardant in thermal insulation products and ceiling tiles.

Blue
Crocidolite, CAS No. 12001-28-4 is an amphibole found primarily in southern Africa, but also in Australia. It is the fibrous form of the amphibole riebeckite. One formula given for crocidolite is Na2Fe2+3Fe3+2Si8O22(OH)2.
Chrysotile commonly occurs as soft friable fibers. Asbestiform amphibole may also occur as soft friable fibers but some varieties such as amosite are commonly straighter. All forms of asbestos are fibrillar in that they are composed of fibers with breadths less than 1 micrometer that occur in bundles and have very great widths. Asbestos with particularly fine fibers is also referred to as "amianthus". Amphiboles such as tremolite have a crystal structure containing strongly bonded ribbonlike silicate anion polymers that extend the width of the crystal. Serpentine (chrysotile) has a sheetlike silicate anion which is bowed and which rolls up like a carpet to form the fiber.

Other materials
Other regulated asbestos minerals, such as tremolite asbestos, CAS No. 77536-68-6, Ca2Mg5Si8O22(OH)2; actinolite asbestos, CAS No. 77536-66-4, Ca2(Mg, Fe)5(Si8O22)(OH)2; and anthophyllite asbestos, CAS No. 77536-67-5, (Mg, Fe)7Si8O22(OH)2; are less commonly used industrially but can still be found in a variety of construction materials and insulation materials and have been reported in the past to occur in a few consumer products.
Other natural and not currently regulated asbestiform minerals, such as richterite, Na(CaNa)(Mg, Fe++)5(Si8O22)(OH)2, and winchite, (CaNa)Mg4(Al, Fe3+)(Si8O22)(OH)2, may be found as a contaminant in products such as the vermiculite containing zonolite insulation manufactured by W.R. Grace and Company. These minerals are thought to be no less harmful than tremolite, amosite, or crocidolite, but since they are not regulated, they are referred to as "asbestiform" rather than asbestos although may still be related to diseases and hazardous.[citation needed]:)

No comments:

Post a Comment